Higher-order tangent and secant numbers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order tangent and secant numbers

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Tangent numbers Tangent numbers of order k Secant numbers Secant numbers of order k Higher-order (or, generalized)...

متن کامل

The (t,q)-Analogs of Secant and Tangent Numbers

To Doron Zeilberger, with our warmest regards, on the occasion of his sixtieth birthday. Abstract. The secant and tangent numbers are given (t, q)-analogs with an explicit com-binatorial interpretation. This extends, both analytically and combinatorially, the classical evaluations of the Eulerian and Roselle polynomials at t = −1.

متن کامل

The q-tangent and q-secant numbers via continued fractions

It is well known that the (−1)-evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). Recently, two distinct q-analogues of the latter result have been discovered by Foata and Han, and Josuat-Vergès, respectively. In this paper, we will prove some general continued fractions expansions formu...

متن کامل

Fast computation of Bernoulli, Tangent and Secant numbers

We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or Euler) numbers. In particular, we give asymptotically fast algorithms for computing the first n such numbers in O(n2(logn)2+o(1)) bit-operations. We also give very short in-place algorithms for computing the first n Tangent or Secant numbers in O(n2) integer operations. These algorithms are extremely simple, and fast fo...

متن کامل

Lagrangians and higher order tangent spaces

The aim of the paper is to prove that T M , the tangent space of order k ≥ 1 of a manifold M , is diffeomorphic with T 1 k M , the tangent space of k–velocities, and also with ( T 1 k )∗ M , the cotangent space of k–covelocities, via suitable Lagrangians. One prove also that a hyperregular Lagrangian of first order on M can give rise to such diffeomorphisms. M.S.C. 2000: 53C60, 53C80, 70H50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2011

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2011.06.031